A Hierarchical Bayesian Model of Consumer Learning in Online Penny Auctions

Presented by: Jin Li

Joint work with: Zhiling Guo and Geoffrey Tso

1 Department of Management Sciences, College of Business, City University of Hong Kong
2 School of Information Systems, Singapore Management University
Outline

- Introduction
- Research objective
- Empirical model
- Data
- Estimation
- Results
- Future research
Introduction

A PA example from dealdash.com

- Retail Price: ¥4,899
- The auctioneer’s revenue: ¥13,872+ ¥138.72
- The winner made 670 bids in this auction
- The winner paid ¥3*670+ ¥138.72
- Losers paid bidding fee but got nothing
 - One loser made 875 bids, the bidding fee is ¥3*875
Introduction

How is the mechanism different?

- **Traditional Auctions:**
 - if you win, you get the product with price close to its market value.
 - if you lose, it does not cost you anything.

- **Penny Auctions:**
 - if you win, you could achieve huge savings.
 - If you lose, you get nothing after spending a lot in bids.
Research Objective

Prior research and our objective

- Our research objective:
 - Using **learning** to help understand bidders’ behavior better.

- Ma et al. (2013). Structural model of consumer behaviors.

- Wang and Xu (2012). **Learning.** PA is **not sustainable.**

- Platt et al. (2011). **Predicts** distribution of ending prices.

- Augenblick (2011). Bidders’ behaviors. Do they **learn**?

- Byers et al. (2010). Information Asymmetries, **Auctioneers win.**

- Hinnosaar (2010). Penny Auctions are **Unpredictable.**
Data

Data set

Data collection:
Using http-watcher to monitor the webpage and doing data cleaning

- Item Name
- Retail Price
- Closing Price
- Commission Fee
- Bid Cost
- …

- Auction Level
 - Auction ID
 - Starting Price
 - Ending Price
 - Price Increment
 - …

- Bid Level
 - Bid ID
 - Time Placed
 - Active Player Total
 - …
Descriptive statistics

Revenue distribution

Table 2: Auctioneer Revenue from Auctions by Product Categories

<table>
<thead>
<tr>
<th>Product Categories</th>
<th>No. of Auctions</th>
<th>Total Revenue</th>
<th>Total Value of Products Sold</th>
<th>Revenue Per ¥ Worth of Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidding Tokens</td>
<td>3,344</td>
<td>867,561</td>
<td>138,090</td>
<td>6.28</td>
</tr>
<tr>
<td>Apple Products</td>
<td>304</td>
<td>2,081,011</td>
<td>646,484</td>
<td>3.22</td>
</tr>
<tr>
<td>20,30,50,100,200 Refill Cards</td>
<td>2,438</td>
<td>403,266</td>
<td>146,220</td>
<td>2.76</td>
</tr>
<tr>
<td>Notebooks</td>
<td>82</td>
<td>455,562</td>
<td>205,041</td>
<td>2.22</td>
</tr>
<tr>
<td>Mobile Phones</td>
<td>403</td>
<td>808,611</td>
<td>383,920</td>
<td>2.11</td>
</tr>
<tr>
<td>PCs and Monitors</td>
<td>126</td>
<td>378,507</td>
<td>205,154</td>
<td>1.84</td>
</tr>
<tr>
<td>GPS Navigators</td>
<td>164</td>
<td>81,201</td>
<td>96,957</td>
<td>0.84</td>
</tr>
<tr>
<td>Portable Media Players</td>
<td>749</td>
<td>207,712</td>
<td>248,088</td>
<td>0.84</td>
</tr>
<tr>
<td>Audio Players</td>
<td>321</td>
<td>82,616</td>
<td>109,225</td>
<td>0.76</td>
</tr>
<tr>
<td>Coupons</td>
<td>873</td>
<td>24,230</td>
<td>36,986</td>
<td>0.66</td>
</tr>
<tr>
<td>10 Refill Cards</td>
<td>2,771</td>
<td>14,194</td>
<td>27,710</td>
<td>0.51</td>
</tr>
<tr>
<td>Total</td>
<td>23,884</td>
<td>8,576,823</td>
<td>5,111,839</td>
<td>1.68</td>
</tr>
</tbody>
</table>
Descriptive statistics

Auction types

<table>
<thead>
<tr>
<th>Category</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Virtual Products</td>
<td>General Merchandise</td>
<td>Cheap Digital Products</td>
<td>Expensive Digital Products</td>
<td>Free Auctions</td>
<td>Total</td>
</tr>
<tr>
<td># Auctioned</td>
<td>5,486</td>
<td>5,142</td>
<td>6,790</td>
<td>479</td>
<td>3,566</td>
<td>21,463</td>
</tr>
<tr>
<td># Profitable</td>
<td>3,975</td>
<td>1,600</td>
<td>2,095</td>
<td>317</td>
<td>7</td>
<td>7,994</td>
</tr>
<tr>
<td>% Profitable</td>
<td>0.725</td>
<td>0.311</td>
<td>0.309</td>
<td>0.662</td>
<td>0.002</td>
<td>0.372</td>
</tr>
<tr>
<td>Ave. Retail Price</td>
<td>50.45</td>
<td>220.84</td>
<td>280.31</td>
<td>2,749.10</td>
<td>31.52</td>
<td>221.07</td>
</tr>
</tbody>
</table>
Descriptive statistics

Is the sub-sample meaningful?

Time Period:

Sampling by Participation:
>=50 635 bidders
>=100 194 bidders
Empirical model

Utility and likelihood

- Refer to Erdem and Keane (1996), Erdem et al. (2008) and Ghose and Han (2012), we define the utility as:

\[U_{ijt} = w_E E_{ijt} - w_E r E_{ijt}^2 + w_M (R_{ijt} - S_{ijt}) + e_{ijt} \]

- Two parts: entertainment part and monetary part;
- Non-linear in entertainment to capture bidders’ risk preferences towards the entertainment they obtain.

- Likelihood: \[L(A_{ijt}) = \left(\frac{\exp(\bar{U}_{ijt})}{1 + \exp(\bar{U}_{ijt})} \right) A_{ijt} \left(\frac{1}{1 + \exp(\bar{U}_{ijt})} \right)^{1 - A_{ijt}} \]

\(i \) : index the bidder \hspace{1cm} \(j \) : denotes the auction category \hspace{1cm} \(t \) : represent the time unit “day”

\(E_{ijt} \): entertainment value \hspace{1cm} \(R_{ijt} \): monetary benefit \hspace{1cm} \(S_{ijt} \): sunk cost \hspace{1cm} \(e_{ijt} \): capture a bidder’s preference shock

\(w_E \): weight for the entertainment value \hspace{1cm} \(w_M \): weight for the monetary value \hspace{1cm} \(r \): risk coefficient

\(A_{ijt} \): to indicate participating (1) or not (0)
Empirical model

Consumer learning

When bidder registered for the website, their prior belief of the entertainment follows a normal distribution:

$$E_{ij0} \sim N(E_{i0}, \sigma^2_{E_{i0}})$$

E_{ij} is the mean entertainment value bidder i obtains from category j auctions; ϵ_{ijtm} is the deviation; $\sigma^2_{E_i}$ is individual specific. The m^{th} entertainment signal for consumer i is given by:

$$E_{ijtm} = E_{ij} + \epsilon_{ijtm} \quad \epsilon_{ijtm} \sim N(0, \sigma^2_{E_i})$$

If there are $n_{e_{ijt}}$ category j auctions participated by the bidder on day t, then the aggregate signal he/she receives is given as follows:

$$E_{ijts} = \frac{\sum_m E_{ijtm}}{n_{e_{ijt}}} \sim N(E_{ij}, \frac{\sigma^2_{E_i}}{n_{e_{ijt}}})$$
Empirical model

Bayesian updating

According to the normal learning Bayes rule (DeGroot 1970), the posterior belief at every time period follows a normal distribution:

\[E_{ijt} \sim N(E_{ijt}^e, \sigma_{E_{ijt}}^2) \]

where

\[E_{ijt}^e = \frac{\sigma_{E_{ijt}}^2}{\sigma_{E_{ij(t-1)}}^2} E_{ij(t-1)}^e + ne_{ijt} \frac{\sigma_{E_{ijt}}^2}{\sigma_{E_i}^2} E_{ijts} \]

\[\sigma_{E_{ijt}}^2 = \frac{1}{1/\sigma_{E_{ij(t-1)}}^2 + ne_{ijt}/\sigma_{E_i}^2} \]

The prior in period \(t = 0 \) is \(E_{ij0}^e = E_{i0} \), \(\sigma_{E_{ij0}}^2 = \sigma_{E_{i0}}^2 \)
Estimation

Parameters and methods

- Parameters:
 \[\gamma_i = \begin{bmatrix} E_{i1} & E_{i2} & E_{i3} & E_{i4} & E_{i5} & \ln\sigma^2_{E_i} & E_{i0} \end{bmatrix} \]
 \[\psi = \begin{bmatrix} w_E & r & w_M \end{bmatrix} \]

- Refer to Netzer et al. (2008) and Narayanan and Manchanda (2009)
 We use hierarchical Bayesian estimation methods:

 Step 1 \[\gamma_i \mid A_i, E_i, \psi, \bar{\gamma}, V_{\gamma} \] Adaptive MH
 Step 2 \[\bar{\gamma} \mid \{\gamma_i\}, V_{\gamma} \] Gibbs Sampling
 Step 3 \[V_{\gamma} \mid \{\gamma_i\}, \bar{\gamma} \] Gibbs Sampling
 Step 4 \[\psi \mid A, E, \{\gamma_i\} \] Adaptive MH
 Step 5 \[E_{ijt} \mid A_{ijt}, E_{ijt-1}, \psi, \gamma_i \] Adaptive MH
Results

Parameter Estimates

Table 6: Pooled Parameter Estimates

<table>
<thead>
<tr>
<th>Notation</th>
<th>Parameter Estimates</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_E)</td>
<td>0.150</td>
<td>0.568</td>
</tr>
<tr>
<td>(r)</td>
<td>-1.039</td>
<td>0.342</td>
</tr>
<tr>
<td>(w_M)</td>
<td>0.779</td>
<td>0.383</td>
</tr>
</tbody>
</table>

Table 7: Bidder-level Parameter Estimates

<table>
<thead>
<tr>
<th>Notation</th>
<th>Parameter Estimates*</th>
<th>Standard Deviation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{i1})</td>
<td>0.859</td>
<td>0.122</td>
</tr>
<tr>
<td>(E_{i2})</td>
<td>1.165</td>
<td>0.136</td>
</tr>
<tr>
<td>(E_{i3})</td>
<td>0.884</td>
<td>0.147</td>
</tr>
<tr>
<td>(E_{i4})</td>
<td>1.140</td>
<td>0.152</td>
</tr>
<tr>
<td>(E_{i5})</td>
<td>0.767</td>
<td>0.117</td>
</tr>
<tr>
<td>(\ln\sigma^2_{E_{i1}})</td>
<td>1.053</td>
<td>0.125</td>
</tr>
<tr>
<td>(E_{i0})</td>
<td>1.943</td>
<td>1.724</td>
</tr>
</tbody>
</table>

*For each bidder, the posterior distribution of each parameter has a mean and s.d. The mean and standard deviation listed in the table are the mean and s.d. of the bidder-level parameter means.

1. For \(w_E \), positive sign;
2. Risk seeking;
3. Expected more profit, interested more;
4. Overestimate \(E \) value initially;
5. S.D. of \(E_{i0} \) is larger, bidders vary a lot;
6. Category 2 : various auctions;
7. Category 4 : once win, win large;
8. \(\exp(1.053)=2.866 \), signals are not very accurate.
Results

Major findings
- w_E and w_M have expected signs
- Bidders are risk seeking, so they persist in such a gambling.
- Bidders overestimate entertainments before participating.
- Bidders obtain larger entertainment from type 2 & 4 auctions.

Future research
- Robust test
 - Larger samples
- Policy simulation
 - Information disclose
Thank You!